CHAPTER 21

How to Calculate Material Requirements

HOW TO CALCULATE MATERIAL REQUIREMENTS

Examples on how to Calculate Material Quantities:

Wall Height: $\quad 2.4 \mathrm{~m}$
Calculate:

1. Volume of concrete - foundation slab
2. Number of bricks required
3. Material required for topping
4. Material required for plaster internally and externally

1. Concrete Footing (Strip Foundation)

To calculate the volume of concrete required, the overall dimensions of the concrete strip foundations need to be determined. Also, refer to guidelines of cement manufacturer.

Overall length + outside wall dimension +380
Therefore : $\quad 7800+380=8180 \mathrm{~m}$

Volume $=\quad \mathrm{L} \times B \times H$ (thickness)
$=\quad 2(8180)+2(6380) \times 600 \times 200$
$=\quad(16360+12760) \times 600 \times 200$
$=\quad 29.120 \times 600 \times 200$
$=3.49 \mathrm{~m}^{3}$

Requirements: Low Strength Concrete

To produce $1 \mathrm{~m}^{3}$ of concrete you will need:

5.5 bags cement
 $0.7 \mathrm{~m}^{3}$ riversand
 $0.75 \mathrm{~m}^{3}$ stone

To produce $3.49 \mathrm{~m}^{3}$ of concrete as per the calculation, the following is required:
3.49×5.5
3.49×0.75
3.49×0.75
$=\quad 19.195$ bags cement (round off to 20 bags)
$=\quad 2.6175 \mathrm{~m}^{3}$ riversand (round off to $3 \mathrm{~m}^{3}$)
2. Floor Slab

To calculate the volume of concrete required, refer to the Internal dimensions of the room. Also, refer to guidelines of cement manufacturer.

Therefore: $\quad 7800 \mathrm{~mm}-(220+220)=7800-440=7360$ $6000 \mathrm{~mm}-(220+220)=6000-440=5560$

Volume
$=\quad$ Length \times Width \times Thickness
$=\quad 7.360 \mathrm{~m} \times 5.560 \mathrm{~m} \times 0.075 \mathrm{~m}$
$=3.069 \mathrm{~m}^{3}$

Requirements: Medium Strength Concrete

To produce medium strength concrete as per the calculation, the following is required:
$3.069 \times 7=21.483$ bags of cement (round off to 22)
$3.069 \times 0.70=2.1483$ (round off to $2.2 \mathrm{~m}^{3}$ riversand sand)
$3.069 \times 0.70=2.1483$ (round off to $2.2 \mathrm{~m}^{3}$ stone)

3. Clay Brick Walls

To calculate the number of Clay Bricks required for the construction of walls, the following formula is applied. Also, contact your local Clay Brick supplier should you need assistance.

External Walls : 220 mm or two leaf walls
For every $1 \mathrm{~m}^{2}$ of walling : 110 bricks are required
Formula = Area

NOTE
Clay Bricks are delivered on pallets or packages. Please check with your supplier to order economical loads.

4. Topping (Screed)

To produce $100 \mathrm{~m}^{2}$ of screed, that is 25 mm thick you will need:
$\begin{array}{ll}23 & \text { bags of cement } \\ 3.0 m^{3} & \text { riversand sand }\end{array}$

The formula to calculate the volume of screed required is as follows. Consult with your local materials supplier should you need assistance.

Floor Area	$=$	$7.360 \mathrm{~m} \times 5.560 \mathrm{~m}$
	$=$	$40.92\left(41 \mathrm{~m}^{2}\right)$
0.41×23	$=$	$9.43(10)$ pockets cement
0.41×3	$=$	$1.23 \mathrm{~m}^{3}$ sand

5. Plaster

The formula to calculate 15 mm thick plaster is as follows.

Internal

Formula

$=$	
$=$	
$=$	$(14.72+11.12) \times 2.4$
$=$	25.84×2.4
$=$	$62.016 \mathrm{~m}^{2}$

For every $100 \mathrm{~m}^{2}$ of plaster 15 mm thick, the following is required. Consult with your local materials supplier should you need assistance.

NOTES

